Minor refactoring
This commit is contained in:
parent
034e6cbe6f
commit
84734e4113
@ -54,7 +54,7 @@ astar initState goalState hueristic =
|
||||
else astar' pq'' seen' tracks'
|
||||
where
|
||||
-- Find the state with min f-cost
|
||||
(state, cost) = snd . PQ.findMin $ pq
|
||||
(state, gcost) = snd . PQ.findMin $ pq
|
||||
|
||||
-- Delete the state from open set
|
||||
pq' = PQ.deleteMin pq
|
||||
@ -65,17 +65,17 @@ astar initState goalState hueristic =
|
||||
-- Find the successors (with their g and h costs) of the state
|
||||
-- which have not been seen yet
|
||||
successors = filter (\(s, _, _) -> not $ S.member s seen')
|
||||
$ succsWithPrio state cost
|
||||
$ successorsAndCosts state gcost
|
||||
|
||||
-- Insert the successors in the open set
|
||||
pq'' = foldl (\q (s, c, h) -> PQ.insert (c + h) (s, c) q) pq' successors
|
||||
pq'' = foldl (\q (s, g, h) -> PQ.insert (g + h) (s, g) q) pq' successors
|
||||
|
||||
-- Insert the tracks of the successors
|
||||
tracks' = foldl (\m (s, _, _) -> M.insert s state m) tracks successors
|
||||
|
||||
-- Finds the successors of a given state and their costs
|
||||
succsWithPrio state cost =
|
||||
map (\(s,c) -> (s, cost + c, hueristic s goalState)) . succs $ state
|
||||
successorsAndCosts state gcost =
|
||||
map (\(s,g) -> (s, gcost + g, hueristic s goalState)) . succs $ state
|
||||
|
||||
-- Constructs the path from the tracks and last state
|
||||
findPath tracks state =
|
||||
@ -89,7 +89,8 @@ type Point = (Int, Int)
|
||||
-- A sliding puzzle
|
||||
-- blank : which item is considered blank
|
||||
-- pzState : the current state of the puzzle
|
||||
data Puzzle a = Puzzle { blank :: a, pzState :: Array Point a } deriving (Eq, Ord)
|
||||
data Puzzle a = Puzzle { blank :: a, blankPos :: Point, pzState :: Array Point a }
|
||||
deriving (Eq, Ord)
|
||||
|
||||
-- Get puzzle size
|
||||
puzzleSize :: Puzzle a -> Int
|
||||
@ -98,25 +99,24 @@ puzzleSize = fst . snd . A.bounds . pzState
|
||||
-- Create a puzzle give the blank, the puzzle size and the puzzle state as a list,
|
||||
-- left to right, top to bottom.
|
||||
-- Return Just puzzle if valid, Nothing otherwise
|
||||
fromList :: a -> Int -> [a] -> Maybe (Puzzle a)
|
||||
fromList :: Ord a => a -> Int -> [a] -> Maybe (Puzzle a)
|
||||
fromList b n xs =
|
||||
if n * n /= length xs
|
||||
if (n * n /= length xs) || (b `notElem` xs)
|
||||
then Nothing
|
||||
else Just . Puzzle b $ array ((1, 1), (n, n)) [((i, j), xs !! (n * (i-1) + (j-1)))
|
||||
| i <- range (1, n), j <- range (1, n)]
|
||||
else Just $ Puzzle { blank = b
|
||||
, blankPos = let (d, r) = (fromJust . elemIndex b $ xs) `divMod` n
|
||||
in (d + 1, r + 1)
|
||||
, pzState = array ((1, 1), (n, n))
|
||||
[((i, j), xs !! (n * (i-1) + (j-1)))
|
||||
| i <- range (1, n), j <- range (1, n)]
|
||||
}
|
||||
|
||||
-- Shows the puzzle state as a string
|
||||
showPuzzleState :: Show a => Puzzle a -> String
|
||||
showPuzzleState pz =
|
||||
('\n' :) . concat . intersperse "\n"
|
||||
. map (concat . intersperse " ") . splitEvery len
|
||||
. map (concat . intersperse " ") . splitEvery (puzzleSize pz)
|
||||
. map show . A.elems . pzState $ pz
|
||||
where len = puzzleSize pz
|
||||
|
||||
-- Find the position of the blank
|
||||
blankPos :: Ord a => Puzzle a -> Point
|
||||
blankPos pz =
|
||||
fst . fromJust . find (\(i, tile) -> tile == (blank pz)) . A.assocs . pzState $ pz
|
||||
|
||||
-- Get the legal neighbouring positions
|
||||
neighbourPos :: Int -> Point -> [Point]
|
||||
@ -126,10 +126,9 @@ neighbourPos len p@(x, y) =
|
||||
|
||||
-- Get the next legal puzzle states
|
||||
nextStates :: Ord a => Puzzle a -> [Puzzle a]
|
||||
nextStates pz = map (\p -> Puzzle (blank pz) (swap p blankAt (pzState pz)))
|
||||
$ neighbourPos len blankAt
|
||||
nextStates pz = map (\p -> Puzzle (blank pz) p (swap p blankAt (pzState pz)))
|
||||
$ neighbourPos (puzzleSize pz) blankAt
|
||||
where
|
||||
len = puzzleSize pz
|
||||
blankAt = blankPos pz
|
||||
|
||||
-- Make Puzzle an instance of GameState with unit step cost
|
||||
@ -146,16 +145,15 @@ shufflePuzzle n pz =
|
||||
if n == 0
|
||||
then return pz
|
||||
else do
|
||||
let s = succs pz
|
||||
let s = nextStates pz
|
||||
i <- getRandomR (0, length s - 1)
|
||||
shufflePuzzle (n - 1) (fst (s !! i))
|
||||
shufflePuzzle (n - 1) (s !! i)
|
||||
|
||||
-- Calculates the number of inversions in puzzle
|
||||
inversions :: Ord a => Puzzle a -> Int
|
||||
inversions pz = sum . map (\l -> length . filter (\e -> e < head l) $ (tail l))
|
||||
. filter ((> 1). length) . tails
|
||||
. filter (not . (== b)) . A.elems . pzState $ pz
|
||||
where b = blank pz
|
||||
. filter (not . (== (blank pz))) . A.elems . pzState $ pz
|
||||
|
||||
-- Calculates the puzzle pairty. The puzzle pairty is invariant under legal moves.
|
||||
puzzlePairty :: Ord a => Puzzle a -> Int
|
||||
|
Loading…
Reference in New Issue
Block a user