Fixed Typeclass scopes
This commit is contained in:
parent
04431eb8e6
commit
034e6cbe6f
@ -32,11 +32,11 @@ swap i i' a = a // [(i, a ! i'), (i', a ! i)]
|
||||
type Cost = Int
|
||||
|
||||
-- A state in the game
|
||||
class Eq a => GameState a where
|
||||
class Ord a => GameState a where
|
||||
succs :: a -> [(a, Cost)]
|
||||
|
||||
-- A* algorithm: Find a path from initial state to goal state using heuristic
|
||||
astar :: (GameState a, Show a, Ord a) => a -> a -> (a -> a -> Cost) -> [a]
|
||||
astar :: GameState a => a -> a -> (a -> a -> Cost) -> [a]
|
||||
astar initState goalState hueristic =
|
||||
astar' (PQ.singleton (hueristic initState goalState) (initState, 0)) S.empty M.empty
|
||||
where
|
||||
@ -114,7 +114,7 @@ showPuzzleState pz =
|
||||
where len = puzzleSize pz
|
||||
|
||||
-- Find the position of the blank
|
||||
blankPos :: Eq a => Puzzle a -> Point
|
||||
blankPos :: Ord a => Puzzle a -> Point
|
||||
blankPos pz =
|
||||
fst . fromJust . find (\(i, tile) -> tile == (blank pz)) . A.assocs . pzState $ pz
|
||||
|
||||
@ -125,7 +125,7 @@ neighbourPos len p@(x, y) =
|
||||
$ [(x+1,y), (x-1,y), (x,y+1), (x,y-1)]
|
||||
|
||||
-- Get the next legal puzzle states
|
||||
nextStates :: Eq a => Puzzle a -> [Puzzle a]
|
||||
nextStates :: Ord a => Puzzle a -> [Puzzle a]
|
||||
nextStates pz = map (\p -> Puzzle (blank pz) (swap p blankAt (pzState pz)))
|
||||
$ neighbourPos len blankAt
|
||||
where
|
||||
@ -133,15 +133,15 @@ nextStates pz = map (\p -> Puzzle (blank pz) (swap p blankAt (pzState pz)))
|
||||
blankAt = blankPos pz
|
||||
|
||||
-- Make Puzzle an instance of GameState with unit step cost
|
||||
instance Eq a => GameState (Puzzle a) where
|
||||
instance Ord a => GameState (Puzzle a) where
|
||||
succs pz = zip (nextStates pz) (repeat 1)
|
||||
|
||||
-- Make Puzzle an instance of Show for pretty printing
|
||||
instance (Show a) => Show (Puzzle a) where
|
||||
instance Show a => Show (Puzzle a) where
|
||||
show pz = showPuzzleState pz
|
||||
|
||||
-- Shuffles a puzzle n times randomly to return a new (reachable) puzzle.
|
||||
shufflePuzzle :: (Eq a) => Int -> Puzzle a -> RandomState (Puzzle a)
|
||||
shufflePuzzle :: Ord a => Int -> Puzzle a -> RandomState (Puzzle a)
|
||||
shufflePuzzle n pz =
|
||||
if n == 0
|
||||
then return pz
|
||||
@ -158,7 +158,7 @@ inversions pz = sum . map (\l -> length . filter (\e -> e < head l) $ (tail l))
|
||||
where b = blank pz
|
||||
|
||||
-- Calculates the puzzle pairty. The puzzle pairty is invariant under legal moves.
|
||||
puzzlePairty :: (Ord a) => Puzzle a -> Int
|
||||
puzzlePairty :: Ord a => Puzzle a -> Int
|
||||
puzzlePairty pz =
|
||||
if odd w
|
||||
then (w + i) `mod` 2
|
||||
@ -170,7 +170,7 @@ puzzlePairty pz =
|
||||
-- Solves a sliding puzzle from initial state to goal state using the given heuristic.
|
||||
-- Return Nothing if the goal state is not reachable from initial state
|
||||
-- else returns Just solution.
|
||||
solvePuzzle :: (Show a, Ord a) => Puzzle a -> Puzzle a
|
||||
solvePuzzle :: Ord a => Puzzle a -> Puzzle a
|
||||
-> (Puzzle a -> Puzzle a -> Cost) -> Maybe [Puzzle a]
|
||||
solvePuzzle initState goalState hueristic =
|
||||
if puzzlePairty initState /= puzzlePairty goalState
|
||||
@ -178,7 +178,7 @@ solvePuzzle initState goalState hueristic =
|
||||
else Just (astar initState goalState hueristic)
|
||||
|
||||
-- Returns number of tiles in wrong position in given state compared to goal state
|
||||
wrongTileCount :: Eq a => Puzzle a -> Puzzle a -> Cost
|
||||
wrongTileCount :: Ord a => Puzzle a -> Puzzle a -> Cost
|
||||
wrongTileCount givenState goalState =
|
||||
length . filter (\(a, b) -> a /= b)
|
||||
$ zip (A.elems . pzState $ givenState) (A.elems . pzState $ goalState)
|
||||
|
Loading…
Reference in New Issue
Block a user