Added Sliding Puzzle solution using A*
This commit is contained in:
parent
643a75deb0
commit
fba669805d
|
@ -0,0 +1,176 @@
|
|||
import Data.Ix
|
||||
import Data.Array
|
||||
import Data.List
|
||||
import Data.List.Split
|
||||
import Data.Maybe
|
||||
import qualified Data.Set as S
|
||||
import qualified Data.Map as M
|
||||
import qualified Data.PQueue.Prio.Min as PQ
|
||||
import System.Random
|
||||
import Control.Monad.State
|
||||
-- import System.IO.Unsafe (unsafePerformIO)
|
||||
-- import Debug.Trace (putTraceMsg)
|
||||
|
||||
-- trace :: String -> a -> a
|
||||
-- trace string expr = unsafePerformIO $ do
|
||||
-- putTraceMsg string
|
||||
-- return expr
|
||||
|
||||
-- A State with a ramdom generator
|
||||
type RandomState = State StdGen
|
||||
|
||||
-- Generates a random element between given limits inside State monad
|
||||
getRandomR :: Random a => (a, a) -> RandomState a
|
||||
getRandomR limits = do
|
||||
gen <- get
|
||||
let (val, gen') = randomR limits gen
|
||||
put gen'
|
||||
return val
|
||||
|
||||
-- Swap the contents of two array indices i and i' in array a
|
||||
swap :: Ix a => a -> a -> Array a b -> Array a b
|
||||
swap i i' a = a // [(i, a ! i'), (i', a ! i)]
|
||||
|
||||
-- Cost of a move
|
||||
type Cost = Int
|
||||
|
||||
-- A state in the game
|
||||
class Eq a => GameState a where
|
||||
succs :: a -> [(a, Cost)]
|
||||
|
||||
-- A* algorithm: Find a path from initialState to goalState using heuristic
|
||||
astar :: (GameState a, Show a, Ord a) => a -> a -> (a -> a -> Cost) -> [a]
|
||||
astar initState goalState hueristic =
|
||||
astar' (PQ.singleton (hueristic initState goalState) (initState, 0)) S.empty M.empty
|
||||
where
|
||||
astar' pq seen tracks =
|
||||
if state == goalState
|
||||
then findPath tracks state
|
||||
else if S.member state seen
|
||||
then astar' pq' seen tracks
|
||||
else astar' pq'' seen' tracks'
|
||||
where
|
||||
(state, cost) = snd . PQ.findMin $ pq
|
||||
pq' = PQ.deleteMin pq
|
||||
seen' = S.insert state seen
|
||||
successors = filter (\(s, _, _) -> not $ S.member s seen')
|
||||
$ succsWithPrio state cost
|
||||
pq'' = foldl (\q (s, c, h) -> PQ.insert (c + h) (s, c) q)
|
||||
pq' successors
|
||||
tracks' = foldl (\m (s, _, _) -> M.insert s state m) tracks successors
|
||||
|
||||
succsWithPrio state cost =
|
||||
map (\(s,c) -> (s, cost + c, hueristic s goalState)) . succs $ state
|
||||
|
||||
findPath tracks state =
|
||||
if M.member state tracks
|
||||
then findPath tracks (fromJust . M.lookup state $ tracks) ++ [state]
|
||||
else [state]
|
||||
|
||||
-- A point in 2d
|
||||
type Point = (Int, Int)
|
||||
|
||||
-- A sliding puzzle
|
||||
-- blank : which item is considered blank
|
||||
-- pzState : the current state of the puzzle
|
||||
data Puzzle a = Puzzle { blank :: a, pzState :: Array Point a } deriving (Eq, Ord)
|
||||
|
||||
-- Get puzzle size
|
||||
puzzleSize :: Puzzle a -> Int
|
||||
puzzleSize = fst . snd . bounds . pzState
|
||||
|
||||
-- Create a puzzle give the blank, the puzzle size and the puzzle state as a list,
|
||||
-- left to right, top to bottom.
|
||||
-- Return Just puzzle if valid, Nothing otherwise
|
||||
fromList :: a -> Int -> [a] -> Maybe (Puzzle a)
|
||||
fromList b n xs =
|
||||
if n * n /= length xs
|
||||
then Nothing
|
||||
else Just . Puzzle b $ array ((1, 1), (n, n)) [((i, j), xs !! (n * (i-1) + (j-1)))
|
||||
| i <- range (1, n), j <- range (1, n)]
|
||||
|
||||
-- Shows the puzzle state as a string
|
||||
showPuzzleState :: Show a => Puzzle a -> String
|
||||
showPuzzleState pz =
|
||||
('\n' :) . concat . intersperse "\n"
|
||||
. map (concat . intersperse " ") . splitEvery len
|
||||
. map show . elems . pzState $ pz
|
||||
where len = puzzleSize pz
|
||||
|
||||
-- Find the position of the blank
|
||||
blankPos :: Eq a => Puzzle a -> Point
|
||||
blankPos pz =
|
||||
fst . fromJust . find (\(i, tile) -> tile == (blank pz)) . assocs . pzState $ pz
|
||||
|
||||
-- Get the legal neighbouring positions
|
||||
neighbourPos :: Int -> Point -> [Point]
|
||||
neighbourPos len p@(x, y) =
|
||||
filter (\(x',y') -> and [x' >= 1, y' >= 1, x' <= len, y' <= len])
|
||||
[(x+1,y), (x-1,y), (x,y+1), (x,y-1)]
|
||||
|
||||
-- Get the next legal puzzle states
|
||||
nextStates :: Eq a => Puzzle a -> [Puzzle a]
|
||||
nextStates pz = map (\p -> Puzzle (blank pz) (swap p blankAt (pzState pz)))
|
||||
$ neighbourPos len blankAt
|
||||
where
|
||||
len = puzzleSize pz
|
||||
blankAt = blankPos pz
|
||||
|
||||
instance Eq a => GameState (Puzzle a) where
|
||||
succs pz = zip (nextStates pz) (repeat 1)
|
||||
|
||||
instance (Show a) => Show (Puzzle a) where
|
||||
show pz = showPuzzleState pz
|
||||
|
||||
-- Shuffles a puzzle n times randomly to return a new (reachable) puzzle.
|
||||
shufflePuzzle :: (Eq a) => Int -> Puzzle a -> RandomState (Puzzle a)
|
||||
shufflePuzzle n pz =
|
||||
if n == 0
|
||||
then return pz
|
||||
else do
|
||||
let s = succs pz
|
||||
i <- getRandomR (0, length s - 1)
|
||||
shufflePuzzle (n - 1) (fst (s !! i))
|
||||
|
||||
-- Calculates the number of inversions in puzzle
|
||||
inversions :: Ord a => Puzzle a -> Int
|
||||
inversions pz = sum . map (\l -> length . filter (\e -> e < head l) $ (tail l))
|
||||
. filter ((> 1). length) . tails
|
||||
. filter (not . (== b)) . elems . pzState $ pz
|
||||
where b = blank pz
|
||||
|
||||
-- Calculates the puzzle pairty. The puzzle pairty is invariant under legal moves.
|
||||
puzzlePairty :: (Ord a) => Puzzle a -> Int
|
||||
puzzlePairty pz =
|
||||
if odd w
|
||||
then (w + i) `mod` 2
|
||||
else (w + i + 1 - b) `mod` 2
|
||||
where w = puzzleSize pz
|
||||
i = inversions pz
|
||||
b = fst . blankPos $ pz
|
||||
|
||||
-- Solves an n sliding puzzle from initState to goalState using heuristic.
|
||||
-- Return Nothing if the goalState is not reachable from initState
|
||||
-- else returns Just solution.
|
||||
solvePuzzle :: (Show a, Ord a) => Puzzle a -> Puzzle a
|
||||
-> (Puzzle a -> Puzzle a -> Cost) -> Maybe [Puzzle a]
|
||||
solvePuzzle initState goalState hueristic =
|
||||
if puzzlePairty initState /= puzzlePairty goalState
|
||||
then Nothing
|
||||
else Just (astar initState goalState hueristic)
|
||||
|
||||
-- Returns number of tiles in wrong position in givenState compared to goalState
|
||||
wrongTileCount :: Eq a => Puzzle a -> Puzzle a -> Cost
|
||||
wrongTileCount givenState goalState =
|
||||
length . filter (\(a, b) -> a /= b)
|
||||
$ zip (elems . pzState $ givenState) (elems . pzState $ goalState)
|
||||
|
||||
manhattanDistance :: Point -> Point -> Int
|
||||
manhattanDistance (x1, y1) (x2, y2) = abs (x1 - x2) + abs (y1 - y2)
|
||||
|
||||
sumManhattanDistance :: Ord a => Puzzle a -> Puzzle a -> Cost
|
||||
sumManhattanDistance givenState goalState =
|
||||
sum . map (\(p, t) -> manhattanDistance p (fromJust . M.lookup t $ revM))
|
||||
. assocs . pzState $ givenState
|
||||
where
|
||||
revM = M.fromList . map (\(x, y) -> (y, x)) . assocs . pzState $ goalState
|
Loading…
Reference in New Issue