Added Sliding Puzzle solution using A*

This commit is contained in:
Abhinav Sarkar 2012-01-10 00:49:56 +05:30
parent 643a75deb0
commit fba669805d
1 changed files with 176 additions and 0 deletions

176
chapter4/SlidingPuzzle.hs Normal file
View File

@ -0,0 +1,176 @@
import Data.Ix
import Data.Array
import Data.List
import Data.List.Split
import Data.Maybe
import qualified Data.Set as S
import qualified Data.Map as M
import qualified Data.PQueue.Prio.Min as PQ
import System.Random
import Control.Monad.State
-- import System.IO.Unsafe (unsafePerformIO)
-- import Debug.Trace (putTraceMsg)
-- trace :: String -> a -> a
-- trace string expr = unsafePerformIO $ do
-- putTraceMsg string
-- return expr
-- A State with a ramdom generator
type RandomState = State StdGen
-- Generates a random element between given limits inside State monad
getRandomR :: Random a => (a, a) -> RandomState a
getRandomR limits = do
gen <- get
let (val, gen') = randomR limits gen
put gen'
return val
-- Swap the contents of two array indices i and i' in array a
swap :: Ix a => a -> a -> Array a b -> Array a b
swap i i' a = a // [(i, a ! i'), (i', a ! i)]
-- Cost of a move
type Cost = Int
-- A state in the game
class Eq a => GameState a where
succs :: a -> [(a, Cost)]
-- A* algorithm: Find a path from initialState to goalState using heuristic
astar :: (GameState a, Show a, Ord a) => a -> a -> (a -> a -> Cost) -> [a]
astar initState goalState hueristic =
astar' (PQ.singleton (hueristic initState goalState) (initState, 0)) S.empty M.empty
where
astar' pq seen tracks =
if state == goalState
then findPath tracks state
else if S.member state seen
then astar' pq' seen tracks
else astar' pq'' seen' tracks'
where
(state, cost) = snd . PQ.findMin $ pq
pq' = PQ.deleteMin pq
seen' = S.insert state seen
successors = filter (\(s, _, _) -> not $ S.member s seen')
$ succsWithPrio state cost
pq'' = foldl (\q (s, c, h) -> PQ.insert (c + h) (s, c) q)
pq' successors
tracks' = foldl (\m (s, _, _) -> M.insert s state m) tracks successors
succsWithPrio state cost =
map (\(s,c) -> (s, cost + c, hueristic s goalState)) . succs $ state
findPath tracks state =
if M.member state tracks
then findPath tracks (fromJust . M.lookup state $ tracks) ++ [state]
else [state]
-- A point in 2d
type Point = (Int, Int)
-- A sliding puzzle
-- blank : which item is considered blank
-- pzState : the current state of the puzzle
data Puzzle a = Puzzle { blank :: a, pzState :: Array Point a } deriving (Eq, Ord)
-- Get puzzle size
puzzleSize :: Puzzle a -> Int
puzzleSize = fst . snd . bounds . pzState
-- Create a puzzle give the blank, the puzzle size and the puzzle state as a list,
-- left to right, top to bottom.
-- Return Just puzzle if valid, Nothing otherwise
fromList :: a -> Int -> [a] -> Maybe (Puzzle a)
fromList b n xs =
if n * n /= length xs
then Nothing
else Just . Puzzle b $ array ((1, 1), (n, n)) [((i, j), xs !! (n * (i-1) + (j-1)))
| i <- range (1, n), j <- range (1, n)]
-- Shows the puzzle state as a string
showPuzzleState :: Show a => Puzzle a -> String
showPuzzleState pz =
('\n' :) . concat . intersperse "\n"
. map (concat . intersperse " ") . splitEvery len
. map show . elems . pzState $ pz
where len = puzzleSize pz
-- Find the position of the blank
blankPos :: Eq a => Puzzle a -> Point
blankPos pz =
fst . fromJust . find (\(i, tile) -> tile == (blank pz)) . assocs . pzState $ pz
-- Get the legal neighbouring positions
neighbourPos :: Int -> Point -> [Point]
neighbourPos len p@(x, y) =
filter (\(x',y') -> and [x' >= 1, y' >= 1, x' <= len, y' <= len])
[(x+1,y), (x-1,y), (x,y+1), (x,y-1)]
-- Get the next legal puzzle states
nextStates :: Eq a => Puzzle a -> [Puzzle a]
nextStates pz = map (\p -> Puzzle (blank pz) (swap p blankAt (pzState pz)))
$ neighbourPos len blankAt
where
len = puzzleSize pz
blankAt = blankPos pz
instance Eq a => GameState (Puzzle a) where
succs pz = zip (nextStates pz) (repeat 1)
instance (Show a) => Show (Puzzle a) where
show pz = showPuzzleState pz
-- Shuffles a puzzle n times randomly to return a new (reachable) puzzle.
shufflePuzzle :: (Eq a) => Int -> Puzzle a -> RandomState (Puzzle a)
shufflePuzzle n pz =
if n == 0
then return pz
else do
let s = succs pz
i <- getRandomR (0, length s - 1)
shufflePuzzle (n - 1) (fst (s !! i))
-- Calculates the number of inversions in puzzle
inversions :: Ord a => Puzzle a -> Int
inversions pz = sum . map (\l -> length . filter (\e -> e < head l) $ (tail l))
. filter ((> 1). length) . tails
. filter (not . (== b)) . elems . pzState $ pz
where b = blank pz
-- Calculates the puzzle pairty. The puzzle pairty is invariant under legal moves.
puzzlePairty :: (Ord a) => Puzzle a -> Int
puzzlePairty pz =
if odd w
then (w + i) `mod` 2
else (w + i + 1 - b) `mod` 2
where w = puzzleSize pz
i = inversions pz
b = fst . blankPos $ pz
-- Solves an n sliding puzzle from initState to goalState using heuristic.
-- Return Nothing if the goalState is not reachable from initState
-- else returns Just solution.
solvePuzzle :: (Show a, Ord a) => Puzzle a -> Puzzle a
-> (Puzzle a -> Puzzle a -> Cost) -> Maybe [Puzzle a]
solvePuzzle initState goalState hueristic =
if puzzlePairty initState /= puzzlePairty goalState
then Nothing
else Just (astar initState goalState hueristic)
-- Returns number of tiles in wrong position in givenState compared to goalState
wrongTileCount :: Eq a => Puzzle a -> Puzzle a -> Cost
wrongTileCount givenState goalState =
length . filter (\(a, b) -> a /= b)
$ zip (elems . pzState $ givenState) (elems . pzState $ goalState)
manhattanDistance :: Point -> Point -> Int
manhattanDistance (x1, y1) (x2, y2) = abs (x1 - x2) + abs (y1 - y2)
sumManhattanDistance :: Ord a => Puzzle a -> Puzzle a -> Cost
sumManhattanDistance givenState goalState =
sum . map (\(p, t) -> manhattanDistance p (fromJust . M.lookup t $ revM))
. assocs . pzState $ givenState
where
revM = M.fromList . map (\(x, y) -> (y, x)) . assocs . pzState $ goalState